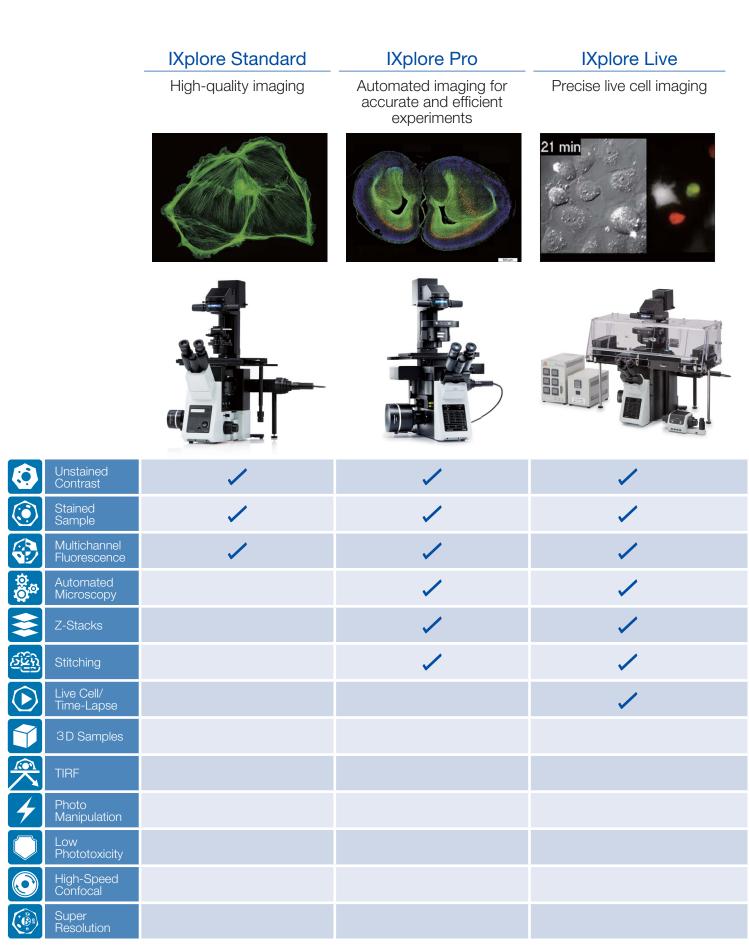
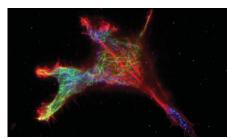


Inverted Imaging Platform

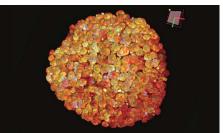

IXplore

Solutions-Based Microscopy

IXplore Series Comparison Chart


Whether working with fixed samples or imaging live cells, discovery is challenging. Each system in the IXplore series is IXplore systems provide accurate, reproducible images and data, and can be adapted as experimental needs evolve or

tailored to fit a specific research application in order to help scientists more efficiently accomplish their goals. become increasingly complex over time.


IXplore TIRF

Excellent multicolor TIRF imaging

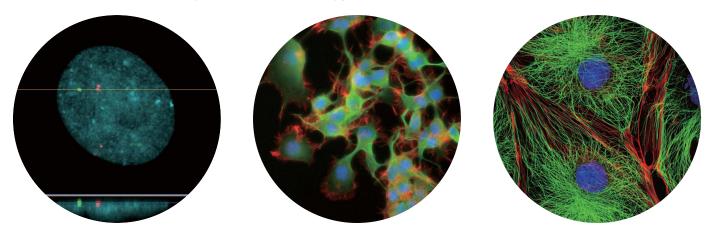
IXplore Spin*

Confocal imaging of rapid cell dynamics

IXplore SpinSR*

Confocal super resolution for all live cell samples

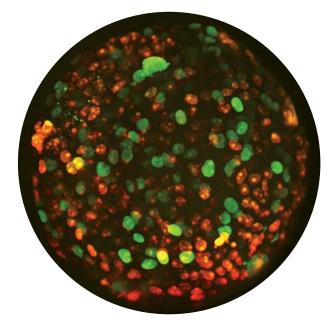
A 10		A 10
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	✓	
		 Image: A second s
		*This was short is such a withher is some succes


*This product is not available in some areas.

Our Most Advanced Optical Technology

During our 100-year history, our customers have come to associate Olympus with high-quality objectives. Our X Line high-performance objectives and A Line application-driven objectives demonstrate our commitment to

Extended Apochromat Objectives


The UPLXAPO extended apochromat objectives have a high numerical aperture (NA), wide, homogenous image flatness, and chromatic aberration compensation from 400 nm to 1000 nm. Built with Olympus' advanced lens manufacturing technology, these objectives provide precision images in a range of applications including brightfield, fluorescence, confocal, and super resolution microscopy.

High-Resolution Objectives for Super Resolution/TIRF

Olympus' pioneering TIRF objectives provide tight control over the evanescent wave produced in TIRF imaging with magnifications ranging from 60X to 150X. From the APON100XHOTIRF objective with the world's highest NA of 1.7* to the world's first plan apochromat objectives with an NA of 1.5* (UPLAPO60XOHR and UPLAPO100XOHR), our TIRF objectives deliver outstanding performance for real-time, super-resolution imaging of live cells and micro-organelles. *As of November 2018; according to Olympus research.

Silicone Oil Objectives^{*2} —Unparalleled Visibility Deep into Live Cells

The refractive index of silicone oil ($ne \approx 1.40$) is close to that of living tissue ($ne \approx 1.38$), enabling high-resolution observations deep inside living tissue with minimal spherical aberration caused by refractive index mismatch. Silicone oil does not dry out or harden, so there is never a need to refill oil, making it ideal for extended time-lapse observations. *² Uses dedicated silicone oil. continuously developing innovative optical technologies.

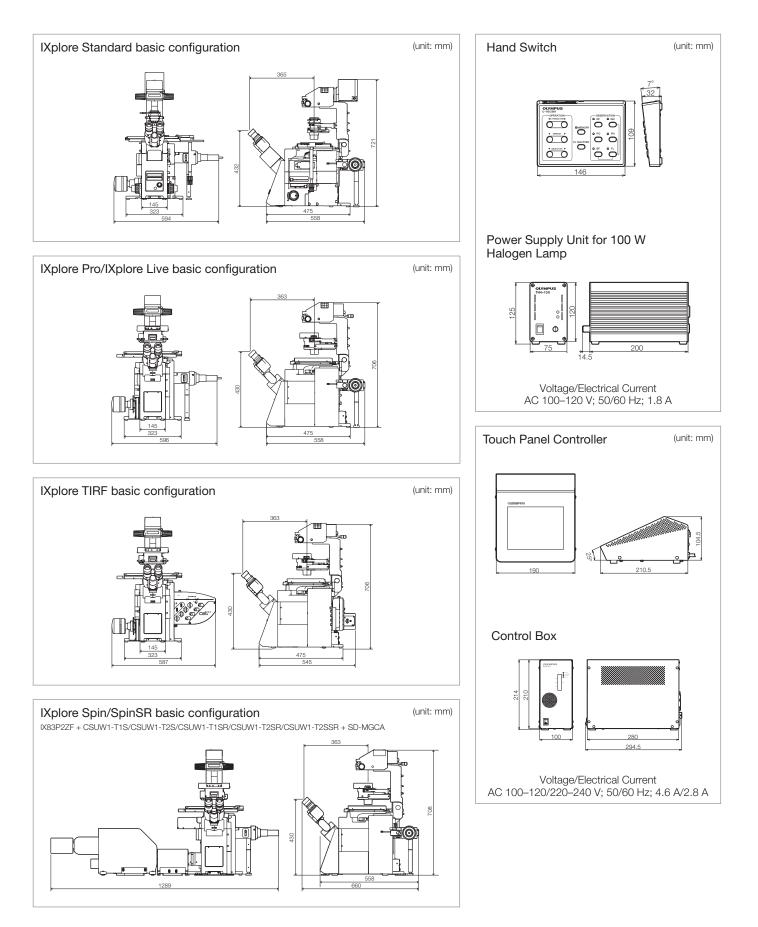
Objective Specifications

UIS2 Objective)	X/A line	NA	W.D. (mm)	OFN	Cover glass thickness (mm)	Immersion medium	Spring loaded	Correction collar	Iris	IX3- ZDC2
UPLXAPO	UPLXAPO4X	X line	0.16	13	26.5	-					
	UPLXAPO10X	X line	0.4	3.1	26.5	0.17					\checkmark
	UPLXAPO20X	X line	0.8	0.6	26.5	0.17		\checkmark			\checkmark
	UPLXAPO40X	X line	0.95	0.18	26.5	0.11-0.23		~	\checkmark		~
	UPLXAPO40XO	X line	1.4	0.13	26.5	0.17	Oil	~			~
	UPLXAPO60XO	X line	1.42	0.15	26.5	0.17	Oil	\checkmark			\checkmark
	UPLXAPO100XO	X line	1.45	0.13	26.5	0.17	Oil	\checkmark			~
	UPLXAPO60XOPH	X line	1.42	0.15	26.5	0.17	Oil	\checkmark			\checkmark
	UPLXAPO100XOPH	X line	1.45	0.13	26.5	0.17	Oil	~			
UPLSAPO	UPLSAPO30XS	A line	1.05	0.8	22	0.13-0.19	Silicone oil		~		1
	UPLSAPO40XS	A line	1.25	0.3	22	0.13-0.19	Silicone oil	~	~		
	UPLSAPO60XW		1.2	0.28	26.5	0.13-0.21	Water	~	√		
	UPLSAPO60XS2	A line	1.3	0.3	22	0.15-0.19	Silicone oil		√		· ~
	UPLSAPO100XS	A line	1.35	0.2	22	0.13-0.19	Silicone oil		· √		· √
PLAPON	PLAPON60XOSC2	A line	1.4	0.12	22	0.17	Oil	 √	· ·		✓ ✓
UPLFLN	UPLFLN4X		0.13	17	26.5	-		•			×
	UPLFLN10X2		0.3	10	26.5	_					✓
	UPLFLN20X		0.5	2.1	26.5	0.17		~			✓ ✓
	UPLFLN40X		0.75	0.51	26.5	0.17		 _√			✓ ✓
	UPLFLN60X		0.73	0.2	26.5	0.17			1		
	UPLFLN60X0I		0.9	0.2	26.5	0.11-0.23	Oil	\checkmark	\checkmark		\checkmark
							-	\checkmark		\checkmark	\checkmark
	UPLFLN100XO2		1.3	0.2	26.5	0.17	Oil	✓ ✓		,	<i>√</i>
	UPLFLN100X0I2		1.3-0.6	0.2	26.5	0.17	Oil	~		\checkmark	✓
	UPLFLN4XPH		0.13	17	26.5	-					
	UPLFLN10X2PH		0.3	10	26.5	-					\checkmark
	UPLFLN20XPH		0.5	2.1	26.5	0.17		 ✓ 			 ✓ ✓
	UPLFLN40XPH		0.75	0.51	26.5	0.17	01	√ 			\checkmark
	UPLFLN60XOIPH		1.25-0.65	0.12	26.5	0.17	Oil	√		\checkmark	
	UPLFLN100XO2PH		1.3	0.2	26.5	0.17	Oil	√			✓
PLFLN	PLFLN100X		0.95	0.2	26.5	0.14-0.2		✓	\checkmark		
UCPLFLN	UCPLFLN20X	A line	0.7	0.8–1.8	22	0–1.6			\checkmark		\checkmark
	UCPLFLN20XPH	A line	0.7	0.8–1.8	22	0–1.6			\checkmark		\checkmark
LUCPLFLN	LUCPLFLN20X		0.45	6.6–7.8	22	0–2			✓		✓
	LUCPLFLN40X		0.6	2.7–4	22	0–2			\checkmark		\checkmark
	LUCPLFLN60X		0.7	1.5–2.2	22	0.1–1.3			\checkmark		\checkmark
	LUCPLFLN20XPH		0.45	6.6–7.8	22	0–2			√		\checkmark
	LUCPLFLN40XPH		0.6	3.0-4.2	22	0–2			√		\checkmark
	LUCPLFLN60XPH		0.7	1.5–2.2	22	0.1–1.3			√		\checkmark
CPLFLN	CPLFLN10XPH		0.3	9.5	22	1					\checkmark
LCACHN	LCACHN20XPH		0.4	3.2	22	1					
	LCACHN40XPH		0.55	2.2	22	1					
CPLN	CPLN10XPH		0.25	10	22	1					
UAPON 340	UAPON20XW340		0.7	0.35	22	0.17	Water	\checkmark			\checkmark
	UAPON40XO340-2		1.35	0.1	22	0.17	Oil	\checkmark			\checkmark
	UAPON40XW340		1.15	0.25	22	0.13–0.25	Water	\checkmark	~		\checkmark
TIRF	UPLAPO60XOHR	A line	1.5	0.11	22	0.13–0.19	Oil		\checkmark		\checkmark
	UPLAPO100XOHR	A line	1.5	0.12	22	0.13–0.19	Oil		\checkmark		1
	APON100XHOTIRF*	A line	1.7	0.08	22	0.15	Oil		\checkmark		~
	UAPON150XOTIRF	A line	1.45	0.08	22	0.13-0.19	Oil		\checkmark		1

*HIGHINDEX-CG cover glass and dedicated immersion oil required.

Recommended Configurations

	IXplore Standard
Microscope frame	IX73 (IX73P2F)
Transmitted Köhler illumination	12 V 100 W halogen (U-LH100L)
Stage	Mechanical stage with right handle (IX3-SVR)
Condenser	Long working distance universal (IX3-LWUCD)
Fluorescence illuminator	L-shaped fluorescence illuminator with fly-eye lens (IX3-RFALFE)
Fluorescence mirror turret	Coded fluorescence mirror turret (IX3-RFACS)
Fluorescence mirror unit	UIS2 mirror units
Fluorescence light source	130 W mercury light guide illumination (U-HGLGPS)
Objective	UPLFLN, LUCPLNFLN-PH, UCPLNFLN-PH, UPLXAPO
Camera	DP74
Imaging software	cellSens Standard


IXplore Live
IX83 (IX83P2ZF)
High color rendering LED (IX3-LHLEDC)
Ultrasonic scanning stage (IX3-SSU)
Motorized long working distance universal (IX3-LWUCDA)
L-shaped fluorescence illuminator with fly-eye lens (IX3-RFALFE)
Motorized fluorescence mirror turret (IX3-RFACA)
UIS2 mirror units
LED light source
UPLXAPO, UPLSAPO-S
ORCA Flash4.0 V3
cellSens Dimension
Z-drift compensator (IX3-ZDC2) Remote correction collar controller (IX3-RCC) Real-time controller (U-RTC/U-RTCE) Incubation housing

	IXplore Pro
Microscope frame	IX83 (IX83P2ZF)
Transmitted Köhler illumination	High color rendering LED (IX3-LHLEDC)
Stage	Ultrasonic scanning stage (IX3-SSU)
Condenser	Motorized long working distance universal (IX3-LWUCDA)
Fluorescence illuminator	L-shaped fluorescence illuminator with fly-eye lens (IX3-RFALFE)
Fluorescence mirror turret	Motorized fluorescence mirror turret (IX3-RFACA)
Fluorescence mirror unit	UIS2 mirror units
Fluorescence light source	130 W mercury light guide illumination (U-HGLGPS)
Objective	UPLXAPO, LUCPLNFLN-PH, UCPLNFLN-PH
Camera	DP80
Imaging software	cellSens Dimension

IXplore TIRF
IX83 (IX83P2ZF)
High color rendering LED (IX3-LHLEDC)
Ultrasonic scanning stage (IX3-SSU)
Motorized long working distance universal (IX3-LWUCDA)
L-shaped fluorescence illuminator with fly-eye lens (IX3-RFALFE)
Motorized fluorescence mirror turret (IX3-RFACA)
UIS2 mirror units
130 W mercury light guide illumination
UPLXAPO, (U)APON-TIRF, UPLAPO-HR
ORCA Flash4.0 V3
cellSens Dimension
celITIRF
Z-drift compensator (IX3-ZDC2) Remote correction collar controller (IX3-RCC) Real-time controller (U-RTC/U-RTCE) Incubation housing

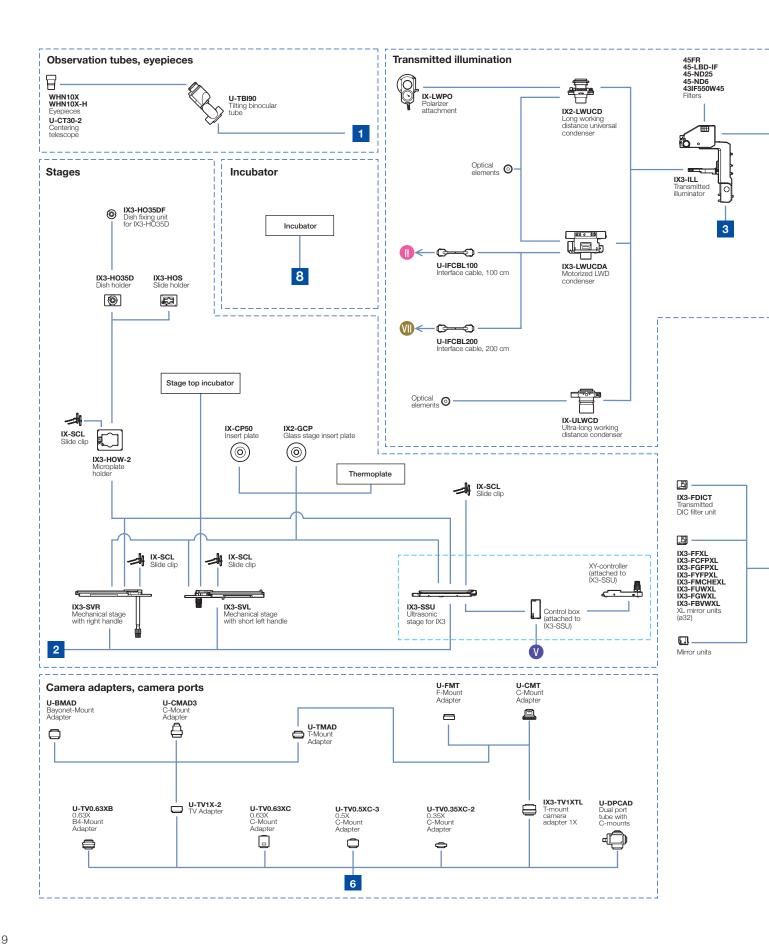
	IXplore Spin
Microscope frame	IX83 (IX83P2ZF)
Transmitted Köhler illumination	High color rendering LED (IX3-LHLEDC)
Stage	Ultrasonic scanning stage (IX3-SSU)
Condenser	Motorized long working distance universal (IX3-LWUCDA)
Fluorescence illuminator	L-shaped fluorescence illuminator with fly-eye lens (IX3-RFALFE)
Fluorescence mirror turret	Motorized fluorescence mirror turret (IX3-RFACA)
Fluorescence mirror unit	UIS2 mirror units
Fluorescence light source	130 W mercury light guide illumination (U-HGLGPS)
Objective	UPLXAPO, UPLAPO-HR, UPLSAPO-S
Camera	ORCA Flash4.0 V3
Imaging software	cellSens Dimension
Confocal scanner	Spinning disk confocal scanner
Accessories	Z-drift compensator (IX3-ZDC2) Remote correction collar controller (IX3-RCC) Real-time controller (U-RTCE) Incubation housing

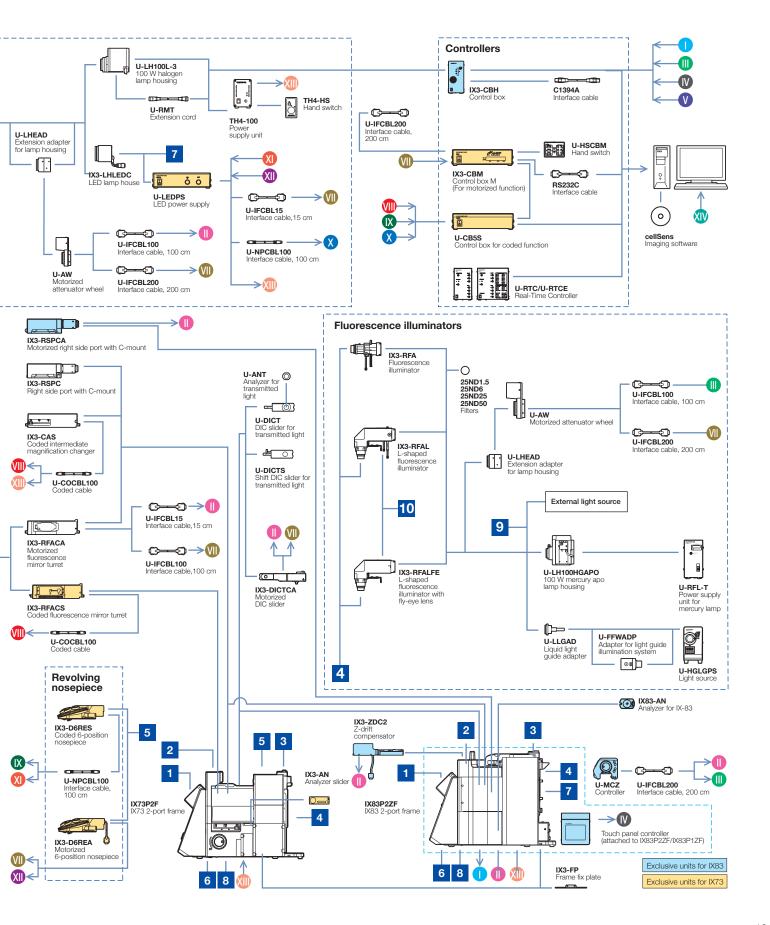
IXplore SpinSR IX83 (IX83P2ZF) High color rendering LED (IX3-LHLEDC)
High color rendering LED (IX3-LHLEDC)
Ultrasonic scanning stage (IX3-SSU)
Motorized long working distance universal (IX3-LWUCDA)
L-shaped fluorescence illuminator with fly-eye lens (IX3-RFALFE)
Motorized fluorescence mirror turret (IX3-RFACA)
UIS2 mirror units
130 W mercury light guide illumination (U-HGLGPS)
UPLXAPO, UPLAPO-HR, UPLSAPO-S
ORCA Flash4.0 V3
cellSens Dimension
Spinning disk confocal scanner
Olympus super resolution (OSR) filter
Z-drift compensator (IX3-ZDC2) Remote correction collar controller (IX3-RCC) Real-time controller (U-RTCE) Incubation housing

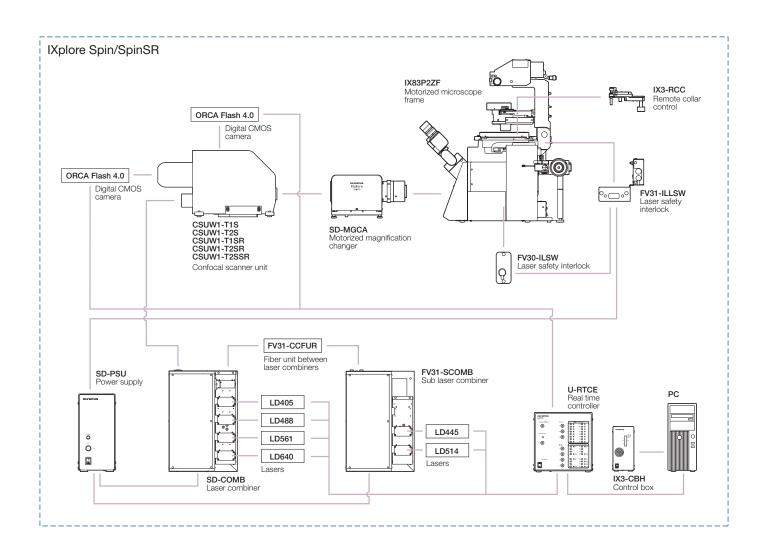
Microscope Specifications

		IXplore Standard			IXplore Pro, Live, TIRF, Spin, SpinSR		
Microscope	Frame	IX73 (IX73P2F)			IX83 (IX83P2ZF)		
frame	Model	Manual	Coded	Semi- motorization	Full-motorization		
	Observation methods	BF, PH, DIC, F	FL		BF, PH, DIC, FL, TIRF, CF, SR		
	Optical system	UIS2 optical system					
	Revolving nosepiece	Coded sextuple revolving nosepiece (DIC slider attachable)*, simple waterproof structure		(DIC slider atta			
	Focus	Stroke: 10 mm			Stroke: 10.5 mm Minimum increment: 0.01µm Maximum nosepiece movement speed: 3 mm		
	Intermediate port	2 ports					
	Light path selection	Manual 0:100/50:50/100:0 (Left side port: BI port)			Motorized 0:100/50:50/100:0 (Left side port: BI port)		
	Transmitted illumination pillar	Condenser ho	anism (30° inclina Ider (with 88 mm ragm adjustable,	stroke, refocusir	ribration reducing mechanism) ng mechanism)		
	Observation tube	Widefield tilting	g binocular, 10X	eyepieces, field n	number 22		
	Controller	-	Control box for coded function	Control box for motorized function, hand switch	Control box, touch panel controller, motorized Z controller		
Fransmitted Köhler	Halogen	12 V, 100 W h	alogen bulb (pre-	-centered)			
Konier Ilumination	LED	High color reproductive LED light source					
Stage	Ultrasonic scanning stage	Stage stroke: X: 114 mm \times Y: 75 mm, maximum stage movement speed: 20 mm/s, motorized XY controler and control box inculded					
	Mechanical stage with right handle	Stage stroke: X: 114 mm × Y: 75 mm, stage position locking function					
	Mechanical stage with left short handle	Stage stroke: X: 114 mm \times Y: 75 mm, stage position locking function					
Condenser	Motorized long working distance universal	W.D. 27 mm, NA 0.55, motorized turret with 7 position slots for optical devices (3 positions for ø30 mm and 4 positions for ø38 mm), motorized aperture and polarizer					
	Long working distance universal	W.D. 27 mm, NA 0.55, manual turret with 5 positions for optical devices (3 positions for ø30 mm and 2 position for ø38 mm)					
	Ultra-long working distance	W.D. 73.3 mm, NA 0.3, manual turret with 4 positions for optical devices (for ø29 mm)					
-luorescence lluminator	L-shaped fluorescence illuminator with fly-eye lens	L-shaped design with exchangeable FS module					
	L-shaped fluorescence illuminator	L-shaped design with exchangeable FS and AS modules					
	Fluorescence illuminator	Straight design with field iris diaphragm					
-luorescence mirror turret	Motorized fluorescence mirror turret	Motorized turret with 8 positions, built-in shutter, simple waterproof structure					
Coded fluorescence mirror turret Coded 8-position turret*, built-in shutter, simple waterproof s				oof structure	-		
luorescence	130 W mercury	130 W mercury light guide illumination					
ght source	100 W mercury	100 W mercury apo lamp housing and transformer					
Focus compensator	Z-drift compensator	Offset method (focus search, one-shot focu continuous focus), class 1 laser product					
Operating environment	Indoor use Ambient temperature: 5 °C to 4 Maximum relative humidity: 80 37 Supply voltage fluctuations: No	% for temperatures up to 31 °C (88 °F), decreasing linearly through 70% at 34 °C (93 °F), 60% at 7 °C (99 °F), to 50% relative humidity at 40 °C (104 °F)					

Supply voltage fluctuations: Not to exceed \pm 10% of the normal voltage


BF: Brightfield, PH: Phase Contrast, DIC: Differential Interference Contrast, TIRF: Total Internal Reflection Fluorescence, FL: Fluorescence, CF: Confocal, SR: Super Resolution *Control box is required for the coded function


			IXplore Spin*	IXplore SpinSR		
Laser lines			405 nm: 50 mW, 445 nm: 75 mW, 488 nm: 100 mW, 514 nm: 40 mW, 561 nm: 100 mW, 640 nm: 100 mW			
Laser combiner			Main combiner: 405 nm, 488 nm, 561 nm, 640 nm + 1 line (445 nm or 514 nm) Sub combiner: 445 nm, 514 nm 2x Interlock shutter available			
_aser light	control		Direct modulation by U-RTCE, ultra- individual laser lines, continuously va	fast ON/OFF control and intensity modulation with rriable (0 % - 100 %, 1 % increments)		
	Yokogawa	Disk unit	Single 50 μm pinhole disk	SoRa disk or 50 µm pinhole disk maximally 2 disks selectable		
	CSU-W1	Camera port	1 or 2 camera model	1 or 2 camera model*2		
		Acquisition speed (Max.)	-	5 ms/f		
	Super	Optical zoom	-	3.2 X		
	resolution imaging	Optical resolution*3	-	SoRa disk: 110 nm 50 µm pinhole disk: 120 nm		
Scanner		Objective field number	-	5.9		
	Acquisition speed (Max.)	5 ms/f				
	Regular confocal	Optical zoom	1 X			
imaging	Objective field number	18.8				
	Dichromatic mirror		3 position (motorized slider)			
	Filter wheel	(emission)	10 position (motorized wheel)			
maging se	nsor		HAMAMATSU ORCA Flash 4.0 V3 (CameraLink)			
Objectives for super resolution		ution	-	UPLSAPO60XS2, UPLSAPO100XS, UPLAPO60XOHR, UPLAPO100XOHR, UPLXAPO60XO, UPLXAPO100XO, PLAPON60XOSC2		
Super reso	lution adapter		Confocal/super re	solution lightpath changer (motorized)		
maging			Multi-dimensional acquisition and analysis			
software cellSens Di		nension	-	Super resolution imaging module		


^{*} IXplore Spin is the system w/o super resolution function, able to upgrade to IXplore SpinSR
 ^{*2} Restrictions dependent on disk unit combinations
 ^{*3} Typical experimental FWHM values with UPLSAPO100XS at 488 nm excitation. SoRa disk with 40 nm diameter beads and 50 µm pinhole disk with 100 nm diameter beads.

System Diagram

OLYMPUS CORPORATION is IS014001 certified.

OLYMPUS CORPORATION is IS09001 certified.

Illumination devices for microscope have suggested lifetimes.
 Periodic inspections are required. Please visit our website for details.

All company and product names are registered trademarks and/or trademarks of their respective owners.
 Images on the PC monitors are simulated.
 Specifications and appearances are subject to change without any notice or obligation on the part of the manufacturer.

www.olympus-lifescience.com

OLYMPUS CORPORATION

Shiniuku Monolith, 2-3-1 Nishi-Shiniuku, Shiniuku-ku, Tokvo 163-0914, Japan